Python AI Chatbot Service Archetype
Production-ready AI chatbot service with configurable LLM backends, multiple frontends, and enterprise integration capabilities
Generate a sophisticated AI chatbot service that supports multiple LLM providers (OpenAI, Mistral, Llama), various frontend options (Streamlit, custom), and enterprise features like vector databases, knowledge graphs, and multi-modal capabilities.
Overview
The python-chatbot archetype creates a comprehensive AI-powered chatbot service with enterprise-grade features, configurable AI models, and production-ready deployment capabilities.
Key Characteristics
- Multi-LLM Support: OpenAI GPT-4, Mistral AI, Llama 3.1/3.2, CodeLlama
- Frontend Options: Streamlit interface, Custom web frontend, API-only deployment
- Vector Databases: Pinecone, Weaviate, Chroma integration
- Knowledge Graphs: Neo4j, Amazon Neptune, Azure Cosmos DB
- Enterprise Features: Authentication, rate limiting, conversation management
- Deployment: Docker, Kubernetes, cloud platforms
AI Architecture
Multi-Model LLM Integration
Configurable AI Components
LLM Models
- OpenAI: GPT-4, GPT-4 Turbo, GPT-4 Vision
- Mistral AI: 7B, 8x7B, Large models
- Meta Llama: 3.1 (8B, 70B, 405B), 3.2 (1B, 3B, 11B, 90B)
- CodeLlama: 7B, 13B, 70B for code generation
Embedding Models
- Open Source: BGE Small, BGE Large
- OpenAI: text-embedding-ada-002, text-embedding-3
- Custom: Fine-tuned domain-specific embeddings
- Multilingual: Support for multiple languages
Configuration System
Interactive Configuration
The archetype provides a sophisticated menu-driven configuration system for customizing the chatbot:
# Example configuration selections
frontend:
type: "Streamlit Frontend" # or "Custom Frontend"
llm_models:
- "OpenAI (GPT4, GPT 4 Turbo, GPT 4 Vision)"
- "Llama3.1 (8b, 70b, 405b)"
embedding_models:
- "OpenAI Embedding Model"
vector_database:
type: "Pinecone" # single selection
knowledge_graph:
type: "Neo4j" # single selection
agent_modules:
- "Multi Document Agent"
- "ReAct Agent"
- "Chain of Thought"
- "SQL Agents"
data_adaptors:
- "S3 / Blob storage"
- "B2B Connectors (e.g. Salesforce, Zendesk, Hubspot etc.)"
Advanced Agent Modules
Reasoning Agents
- ReAct Agent: Reason and Act pattern for complex problem solving
- Chain of Thought: Step-by-step reasoning for complex queries
- Graph of Thought: Non-linear reasoning with knowledge graphs
- Multi-Document Agent: Cross-document information synthesis
Data Integration Agents
- SQL Agents: Natural language to SQL query generation
- Pandas Agent: Data analysis and manipulation
- Search Agent: Web search and information retrieval
- Document Agent: PDF, Word, PowerPoint processing
Frontend Options
Streamlit Integration
Built-in Features
- Interactive chat interface
- File upload for document analysis
- Conversation history management
- Real-time streaming responses
- Model selection interface
Customization Options
- Branded UI with company logos
- Custom CSS and theming
- Multi-language support
- Mobile-responsive design
- Admin configuration panel
Custom Frontend Architecture
# Custom frontend API integration
from fastapi import FastAPI, WebSocket
from fastapi.responses import StreamingResponse
from chatbot_core import ChatbotService
app = FastAPI()
chatbot = ChatbotService()
@app.websocket("/ws/chat")
async def websocket_chat(websocket: WebSocket):
await websocket.accept()
async for message in websocket.iter_text():
# Stream response back to frontend
async for chunk in chatbot.stream_response(message):
await websocket.send_text(chunk)
@app.post("/api/chat")
async def chat_completion(request: ChatRequest):
response = await chatbot.generate_response(
message=request.message,
conversation_id=request.conversation_id,
user_id=request.user_id
)
return response
@app.get("/api/conversations/{user_id}")
async def get_conversations(user_id: str):
return await chatbot.get_user_conversations(user_id)
Knowledge & Data Integration
Vector Database Integration
Data Source Integration
Document Sources
- PDF, Word, PowerPoint files
- Web scraping and crawling
- Wiki and documentation sites
- Email and messaging archives
Structured Data
- SQL databases and data warehouses
- REST APIs and GraphQL endpoints
- CSV, JSON, XML files
- Real-time data streams
Enterprise Integration
- Salesforce, HubSpot, Zendesk
- SharePoint and OneDrive
- Slack, Teams, Discord
- Cloud storage (S3, Blob, GCS)
Enterprise Security
Authentication & Authorization
User Authentication
- OAuth 2.0 / OpenID Connect integration
- SAML SSO for enterprise environments
- API key management for programmatic access
- Multi-factor authentication support
Data Protection
- Conversation encryption at rest and in transit
- PII detection and masking
- GDPR compliance features
- Data retention and deletion policies
Rate Limiting & Usage Control
# Rate limiting configuration
rate_limits:
per_user:
requests_per_minute: 20
requests_per_hour: 500
per_api_key:
requests_per_minute: 100
requests_per_hour: 2000
global:
requests_per_minute: 1000
# Usage tracking and billing
usage_tracking:
track_tokens: true
track_requests: true
billing_integration: true
cost_alerts: true
Advanced Features
Conversation Management
# Advanced conversation features
class ConversationManager:
async def create_conversation(
self,
user_id: str,
context: Optional[dict] = None,
persona: Optional[str] = None
) -> Conversation:
"""Create new conversation with optional context and persona"""
async def add_message(
self,
conversation_id: str,
message: str,
role: MessageRole,
metadata: Optional[dict] = None
) -> Message:
"""Add message to conversation with metadata"""
async def get_context_window(
self,
conversation_id: str,
max_tokens: int = 4000
) -> List[Message]:
"""Get conversation context within token limit"""
async def summarize_conversation(
self,
conversation_id: str
) -> ConversationSummary:
"""Generate conversation summary for long contexts"""
Multi-Modal Capabilities
Input Modalities
- Text conversations and commands
- Image analysis with GPT-4 Vision
- Document upload and analysis
- Voice input with transcription
- Screen sharing for troubleshooting
Output Modalities
- Rich text responses with formatting
- Code generation with syntax highlighting
- Image generation and editing
- Chart and graph creation
- File downloads and exports
Deployment & Scaling
Container Deployment
# Docker Compose configuration
version: '3.8'
services:
chatbot-api:
build: .
ports:
- "8000:8000"
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY}
- VECTOR_DB_URL=${PINECONE_URL}
- KNOWLEDGE_GRAPH_URL=${NEO4J_URL}
depends_on:
- redis
- postgres
chatbot-frontend:
build: ./frontend
ports:
- "8501:8501"
depends_on:
- chatbot-api
redis:
image: redis:7-alpine
volumes:
- redis_data:/data
postgres:
image: postgres:15
environment:
- POSTGRES_DB=chatbot
volumes:
- postgres_data:/var/lib/postgresql/data
Kubernetes Configuration
High Availability
- Multi-replica deployment
- Load balancing across instances
- Database connection pooling
- Redis cluster for session management
Auto-Scaling
- CPU and memory-based scaling
- Request queue depth monitoring
- Custom metrics for LLM usage
- Cost-aware scaling policies
AI Model Management
Model Selection Strategy
Dynamic Model Routing
Intelligent routing of queries to appropriate models based on complexity, cost, latency requirements, and content type.
Cost Optimization
Automatic cost optimization through model selection, caching strategies, and request batching for optimal performance per dollar.
Model Configuration
# Model configuration example
model_config = {
"primary_models": {
"general": "gpt-4-turbo",
"code": "codellama-70b",
"analysis": "claude-3-opus"
},
"fallback_models": {
"general": "gpt-3.5-turbo",
"code": "codellama-7b",
"analysis": "gpt-4"
},
"routing_rules": {
"code_keywords": ["function", "class", "import", "def"],
"analysis_keywords": ["analyze", "compare", "evaluate"],
"simple_queries_threshold": 20 # token count
}
}
Use Cases & Integration
Enterprise Use Cases
- Customer Support: Intelligent helpdesk with knowledge base integration
- Internal Knowledge Assistant: Employee onboarding and training support
- Code Assistant: Development support with codebase understanding
- Document Analysis: Contract review, compliance checking, research
- Sales Assistant: Product information, pricing, and proposal generation
- Data Analytics: Natural language queries over business data
Integration Patterns
- Slack/Teams Bots: Direct integration with collaboration platforms
- API Gateway: Expose chatbot capabilities as enterprise APIs
- Webhook Integration: Real-time notifications and event processing
- SSO Integration: Seamless authentication with enterprise identity providers
- Monitoring Integration: Comprehensive logging and alerting systems
This archetype provides a comprehensive foundation for building enterprise-grade AI chatbot services that can scale from simple Q&A systems to sophisticated AI assistants with multi-modal capabilities and enterprise integration.