[Reference Architecture Name]
Type: [Microservices | Monolith | Event-Driven | Data-Intensive | etc.]
Complexity: [Simple | Moderate | Complex]
Last Updated: [YYYY-MM-DD]
Maintainer: [Team/Individual]
Status: [Draft | Active | Deprecated]
Overview
Purpose
[Brief description of what this reference architecture solves and when to use it]
Use Cases
[List specific scenarios where this architecture is appropriate:]
- Use case 1: Description
- Use case 2: Description
- Use case 3: Description
Key Benefits
- Benefit 1: Description
- Benefit 2: Description
- Benefit 3: Description
When NOT to Use
[Important: describe scenarios where this architecture is not appropriate:]
- Anti-pattern 1: Description
- Anti-pattern 2: Description
Architecture Overview
High-Level Architecture
[Include a comprehensive architecture diagram using Mermaid]
Component Responsibilities
[Component 1 Name]
Purpose: [What this component does] Responsibilities:
- Responsibility 1
- Responsibility 2
- Responsibility 3
Key Technologies: [List main technologies used] Scaling Considerations: [How this component scales]
[Component 2 Name]
Purpose: [What this component does] Responsibilities:
- Responsibility 1
- Responsibility 2
- Responsibility 3
Key Technologies: [List main technologies used] Scaling Considerations: [How this component scales]
[Component 3 Name]
Purpose: [What this component does] Responsibilities:
- Responsibility 1
- Responsibility 2
- Responsibility 3
Key Technologies: [List main technologies used] Scaling Considerations: [How this component scales]
Technical Specifications
Technology Stack
Frontend
- Framework: [React, Vue, Angular, etc.]
- State Management: [Redux, Vuex, NgRx, etc.]
- Build Tools: [Webpack, Vite, etc.]
- Testing: [Jest, Cypress, etc.]
Backend
- Runtime: [Node.js, Java, .NET, Python, etc.]
- Framework: [Express, Spring Boot, ASP.NET, Django, etc.]
- API Style: [REST, GraphQL, gRPC]
- Authentication: [JWT, OAuth2, SAML, etc.]
Data Storage
- Primary Database: [PostgreSQL, MySQL, MongoDB, etc.]
- Caching: [Redis, Memcached, etc.]
- Search: [Elasticsearch, Solr, etc.]
- File Storage: [S3, Azure Blob, etc.]
Infrastructure
- Container Platform: [Docker, Kubernetes, etc.]
- Cloud Provider: [AWS, Azure, GCP, etc.]
- CI/CD: [Jenkins, GitLab CI, GitHub Actions, etc.]
- Monitoring: [Prometheus, DataDog, etc.]
Communication Patterns
Synchronous Communication
[Describe when and how synchronous communication is used]
# Example API endpoint configuration
api:
version: v1
base_url: https://api.example.com
endpoints:
- path: /users
method: GET
auth_required: true
rate_limit: 100/minute
Asynchronous Communication
[Describe when and how asynchronous communication is used]
# Example message queue configuration
messaging:
broker: kafka
topics:
- name: user.events
partitions: 3
replication_factor: 2
- name: order.events
partitions: 5
replication_factor: 3
Data Flow
Request Flow
[Describe how requests flow through the system]
- Client Request: Description of how requests enter the system
- Authentication: How requests are authenticated and authorized
- Routing: How requests are routed to appropriate services
- Processing: How business logic is executed
- Data Access: How data is retrieved and modified
- Response: How responses are formatted and returned
Event Flow
[If applicable, describe how events flow through the system]
Implementation Guide
Prerequisites
[List what needs to be in place before implementation]
- Infrastructure requirement 1
- Tool requirement 2
- Skill requirement 3
Step-by-Step Implementation
Phase 1: Foundation Setup (Week 1-2)
[Detailed steps for setting up the foundation]
-
Infrastructure Setup
# Example commands for infrastructure setup
kubectl create namespace myapp
kubectl apply -f infrastructure/ -
Database Setup
-- Example database schema
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
created_at TIMESTAMP DEFAULT NOW()
); -
Basic Service Deployment
# Example Kubernetes deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: api-service
spec:
replicas: 3
selector:
matchLabels:
app: api-service
template:
metadata:
labels:
app: api-service
spec:
containers:
- name: api
image: myapp/api:latest
ports:
- containerPort: 8080
Phase 2: Core Services (Week 3-4)
[Steps for implementing core business logic]
- Service Implementation
- API Development
- Data Layer Integration
Phase 3: Advanced Features (Week 5-6)
[Steps for implementing advanced features]
- Monitoring Setup
- Security Implementation
- Performance Optimization
Configuration Examples
Environment Configuration
# config/production.yml
database:
host: ${DB_HOST}
port: ${DB_PORT}
name: ${DB_NAME}
redis:
host: ${REDIS_HOST}
port: ${REDIS_PORT}
monitoring:
enabled: true
endpoint: ${MONITORING_ENDPOINT}
Service Configuration
// Example service configuration
const config = {
server: {
port: process.env.PORT || 8080,
host: process.env.HOST || '0.0.0.0'
},
database: {
url: process.env.DATABASE_URL,
pool: {
min: 2,
max: 10
}
},
auth: {
jwtSecret: process.env.JWT_SECRET,
expiresIn: '24h'
}
};
Testing Strategy
Testing Pyramid
[Describe the testing approach]
Unit Tests
// Example unit test
describe('UserService', () => {
it('should create a new user', async () => {
const userData = { email: 'test@example.com' };
const user = await userService.create(userData);
expect(user.email).toBe(userData.email);
});
});
Integration Tests
// Example integration test
describe('API Integration', () => {
it('should handle user creation flow', async () => {
const response = await request(app)
.post('/api/users')
.send({ email: 'test@example.com' })
.expect(201);
expect(response.body.email).toBe('test@example.com');
});
});
End-to-End Tests
// Example E2E test
describe('User Registration Flow', () => {
it('should allow user to register and login', async () => {
await page.goto('/register');
await page.fill('[data-testid=email]', 'test@example.com');
await page.click('[data-testid=submit]');
await expect(page).toHaveURL('/dashboard');
});
});
Performance Testing
[Describe performance testing approach]
# Example load testing configuration
scenarios:
- name: normal_load
duration: 10m
target: 100
- name: spike_test
duration: 2m
target: 500
Monitoring & Observability
Key Metrics
[Define what to monitor]
Application Metrics
- Request rate (requests/second)
- Response time (p95, p99)
- Error rate (%)
- Active users
Infrastructure Metrics
- CPU utilization (%)
- Memory usage (%)
- Disk I/O
- Network throughput
Monitoring Setup
# Example Prometheus configuration
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'api-service'
static_configs:
- targets: ['api-service:8080']
metrics_path: /metrics
scrape_interval: 5s
Alerting Rules
# Example alerting rules
groups:
- name: api-service
rules:
- alert: HighErrorRate
expr: rate(http_requests_total{status=~"5.."}[5m]) > 0.1
for: 5m
annotations:
summary: "High error rate detected"
Logging Strategy
// Example structured logging
const logger = require('winston');
logger.info('User created', {
userId: user.id,
email: user.email,
timestamp: new Date().toISOString(),
requestId: req.id
});
Security Considerations
Authentication & Authorization
[Describe security implementation]
// Example JWT middleware
const authenticateToken = (req, res, next) => {
const token = req.headers['authorization']?.split(' ')[1];
if (!token) {
return res.status(401).json({ error: 'Access token required' });
}
jwt.verify(token, process.env.JWT_SECRET, (err, user) => {
if (err) return res.status(403).json({ error: 'Invalid token' });
req.user = user;
next();
});
};
Data Protection
- Encryption at rest
- Encryption in transit
- PII handling procedures
- Data retention policies
Network Security
- API rate limiting
- CORS configuration
- Input validation
- SQL injection prevention
Scaling Considerations
Horizontal Scaling
[Describe how to scale horizontally]
# Example auto-scaling configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: api-service-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: api-service
minReplicas: 3
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
Database Scaling
[Describe database scaling strategies]
- Read replicas
- Sharding strategies
- Connection pooling
- Caching layers
Performance Optimization
- CDN implementation
- Caching strategies
- Database query optimization
- Asset optimization
Deployment & Operations
Deployment Strategy
[Describe deployment approach]
# Example deployment pipeline
stages:
- build:
script: docker build -t myapp:${CI_COMMIT_SHA} .
- test:
script: npm test
- deploy:
script: kubectl set image deployment/api-service api=myapp:${CI_COMMIT_SHA}
Disaster Recovery
- Backup procedures
- Recovery time objectives (RTO)
- Recovery point objectives (RPO)
- Failover procedures
Maintenance Procedures
- Regular updates
- Security patches
- Database maintenance
- Monitoring review
Cost Considerations
Infrastructure Costs
[Estimate and breakdown costs]
- Compute: $X/month
- Storage: $Y/month
- Network: $Z/month
- Monitoring: $A/month
Optimization Strategies
- Resource right-sizing
- Reserved instances
- Spot instances
- Storage optimization
Migration Guide
From Legacy System
[If applicable, provide migration guidance]
-
Assessment Phase
- Current system analysis
- Data mapping
- Risk assessment
-
Migration Strategy
- Parallel run approach
- Gradual migration
- Rollback plan
-
Data Migration
-- Example data migration script
INSERT INTO new_users (email, created_at)
SELECT email, registration_date
FROM legacy_users
WHERE status = 'active';
Troubleshooting
Common Issues
Issue: High Response Times
Symptoms: API responses taking > 2 seconds Causes:
- Database query performance
- Lack of caching
- Network latency
Solutions:
- Add database indexes
- Implement caching layer
- Optimize queries
Issue: Memory Leaks
Symptoms: Gradually increasing memory usage Causes:
- Unclosed connections
- Event listener leaks
- Large object retention
Solutions:
- Review connection management
- Audit event listeners
- Implement memory profiling
Diagnostic Tools
- Application logs
- Performance profilers
- Database query analyzers
- Network monitoring tools
Related Patterns
Complementary Patterns
- Circuit Breaker Pattern (Coming Soon)
- Event Sourcing Pattern (Coming Soon)
- CQRS Pattern (Coming Soon)
Alternative Architectures
- Monolithic Architecture (Coming Soon)
- Serverless Architecture (Coming Soon)
- Event-Driven Architecture (Coming Soon)
References
Documentation
External Resources
Document Metadata:
- Created: [YYYY-MM-DD]
- Last Updated: [YYYY-MM-DD]
- Next Review: [YYYY-MM-DD]
- Version: 1.0
- Contributors: [List of contributors]
Template Usage Notes
How to Use This Template
- Copy this template for new reference architectures
- Replace all bracketed placeholders
- Remove sections that don't apply
- Include actual code examples and configurations
- Test all code examples before publishing
Required Sections
- Overview, Architecture Overview, Implementation Guide, Testing Strategy
Optional Sections
- Remove if not applicable: Migration Guide, Cost Considerations
Best Practices
- Include working code examples
- Use real-world scenarios
- Keep diagrams up to date
- Validate all links and references