Skip to main content

[Reference Architecture Name]

Type: [Microservices | Monolith | Event-Driven | Data-Intensive | etc.]
Complexity: [Simple | Moderate | Complex]
Last Updated: [YYYY-MM-DD]
Maintainer: [Team/Individual]
Status: [Draft | Active | Deprecated]


Overview

Purpose

[Brief description of what this reference architecture solves and when to use it]

Use Cases

[List specific scenarios where this architecture is appropriate:]

  • Use case 1: Description
  • Use case 2: Description
  • Use case 3: Description

Key Benefits

  • Benefit 1: Description
  • Benefit 2: Description
  • Benefit 3: Description

When NOT to Use

[Important: describe scenarios where this architecture is not appropriate:]

  • Anti-pattern 1: Description
  • Anti-pattern 2: Description

Architecture Overview

High-Level Architecture

[Include a comprehensive architecture diagram using Mermaid]

Component Responsibilities

[Component 1 Name]

Purpose: [What this component does] Responsibilities:

  • Responsibility 1
  • Responsibility 2
  • Responsibility 3

Key Technologies: [List main technologies used] Scaling Considerations: [How this component scales]

[Component 2 Name]

Purpose: [What this component does] Responsibilities:

  • Responsibility 1
  • Responsibility 2
  • Responsibility 3

Key Technologies: [List main technologies used] Scaling Considerations: [How this component scales]

[Component 3 Name]

Purpose: [What this component does] Responsibilities:

  • Responsibility 1
  • Responsibility 2
  • Responsibility 3

Key Technologies: [List main technologies used] Scaling Considerations: [How this component scales]

Technical Specifications

Technology Stack

Frontend

  • Framework: [React, Vue, Angular, etc.]
  • State Management: [Redux, Vuex, NgRx, etc.]
  • Build Tools: [Webpack, Vite, etc.]
  • Testing: [Jest, Cypress, etc.]

Backend

  • Runtime: [Node.js, Java, .NET, Python, etc.]
  • Framework: [Express, Spring Boot, ASP.NET, Django, etc.]
  • API Style: [REST, GraphQL, gRPC]
  • Authentication: [JWT, OAuth2, SAML, etc.]

Data Storage

  • Primary Database: [PostgreSQL, MySQL, MongoDB, etc.]
  • Caching: [Redis, Memcached, etc.]
  • Search: [Elasticsearch, Solr, etc.]
  • File Storage: [S3, Azure Blob, etc.]

Infrastructure

  • Container Platform: [Docker, Kubernetes, etc.]
  • Cloud Provider: [AWS, Azure, GCP, etc.]
  • CI/CD: [Jenkins, GitLab CI, GitHub Actions, etc.]
  • Monitoring: [Prometheus, DataDog, etc.]

Communication Patterns

Synchronous Communication

[Describe when and how synchronous communication is used]

# Example API endpoint configuration
api:
version: v1
base_url: https://api.example.com
endpoints:
- path: /users
method: GET
auth_required: true
rate_limit: 100/minute

Asynchronous Communication

[Describe when and how asynchronous communication is used]

# Example message queue configuration
messaging:
broker: kafka
topics:
- name: user.events
partitions: 3
replication_factor: 2
- name: order.events
partitions: 5
replication_factor: 3

Data Flow

Request Flow

[Describe how requests flow through the system]

  1. Client Request: Description of how requests enter the system
  2. Authentication: How requests are authenticated and authorized
  3. Routing: How requests are routed to appropriate services
  4. Processing: How business logic is executed
  5. Data Access: How data is retrieved and modified
  6. Response: How responses are formatted and returned

Event Flow

[If applicable, describe how events flow through the system]

Implementation Guide

Prerequisites

[List what needs to be in place before implementation]

  • Infrastructure requirement 1
  • Tool requirement 2
  • Skill requirement 3

Step-by-Step Implementation

Phase 1: Foundation Setup (Week 1-2)

[Detailed steps for setting up the foundation]

  1. Infrastructure Setup

    # Example commands for infrastructure setup
    kubectl create namespace myapp
    kubectl apply -f infrastructure/
  2. Database Setup

    -- Example database schema
    CREATE TABLE users (
    id SERIAL PRIMARY KEY,
    email VARCHAR(255) UNIQUE NOT NULL,
    created_at TIMESTAMP DEFAULT NOW()
    );
  3. Basic Service Deployment

    # Example Kubernetes deployment
    apiVersion: apps/v1
    kind: Deployment
    metadata:
    name: api-service
    spec:
    replicas: 3
    selector:
    matchLabels:
    app: api-service
    template:
    metadata:
    labels:
    app: api-service
    spec:
    containers:
    - name: api
    image: myapp/api:latest
    ports:
    - containerPort: 8080

Phase 2: Core Services (Week 3-4)

[Steps for implementing core business logic]

  1. Service Implementation
  2. API Development
  3. Data Layer Integration

Phase 3: Advanced Features (Week 5-6)

[Steps for implementing advanced features]

  1. Monitoring Setup
  2. Security Implementation
  3. Performance Optimization

Configuration Examples

Environment Configuration

# config/production.yml
database:
host: ${DB_HOST}
port: ${DB_PORT}
name: ${DB_NAME}

redis:
host: ${REDIS_HOST}
port: ${REDIS_PORT}

monitoring:
enabled: true
endpoint: ${MONITORING_ENDPOINT}

Service Configuration

// Example service configuration
const config = {
server: {
port: process.env.PORT || 8080,
host: process.env.HOST || '0.0.0.0'
},
database: {
url: process.env.DATABASE_URL,
pool: {
min: 2,
max: 10
}
},
auth: {
jwtSecret: process.env.JWT_SECRET,
expiresIn: '24h'
}
};

Testing Strategy

Testing Pyramid

[Describe the testing approach]

Unit Tests

// Example unit test
describe('UserService', () => {
it('should create a new user', async () => {
const userData = { email: 'test@example.com' };
const user = await userService.create(userData);
expect(user.email).toBe(userData.email);
});
});

Integration Tests

// Example integration test
describe('API Integration', () => {
it('should handle user creation flow', async () => {
const response = await request(app)
.post('/api/users')
.send({ email: 'test@example.com' })
.expect(201);

expect(response.body.email).toBe('test@example.com');
});
});

End-to-End Tests

// Example E2E test
describe('User Registration Flow', () => {
it('should allow user to register and login', async () => {
await page.goto('/register');
await page.fill('[data-testid=email]', 'test@example.com');
await page.click('[data-testid=submit]');
await expect(page).toHaveURL('/dashboard');
});
});

Performance Testing

[Describe performance testing approach]

# Example load testing configuration
scenarios:
- name: normal_load
duration: 10m
target: 100
- name: spike_test
duration: 2m
target: 500

Monitoring & Observability

Key Metrics

[Define what to monitor]

Application Metrics

  • Request rate (requests/second)
  • Response time (p95, p99)
  • Error rate (%)
  • Active users

Infrastructure Metrics

  • CPU utilization (%)
  • Memory usage (%)
  • Disk I/O
  • Network throughput

Monitoring Setup

# Example Prometheus configuration
global:
scrape_interval: 15s

scrape_configs:
- job_name: 'api-service'
static_configs:
- targets: ['api-service:8080']
metrics_path: /metrics
scrape_interval: 5s

Alerting Rules

# Example alerting rules
groups:
- name: api-service
rules:
- alert: HighErrorRate
expr: rate(http_requests_total{status=~"5.."}[5m]) > 0.1
for: 5m
annotations:
summary: "High error rate detected"

Logging Strategy

// Example structured logging
const logger = require('winston');

logger.info('User created', {
userId: user.id,
email: user.email,
timestamp: new Date().toISOString(),
requestId: req.id
});

Security Considerations

Authentication & Authorization

[Describe security implementation]

// Example JWT middleware
const authenticateToken = (req, res, next) => {
const token = req.headers['authorization']?.split(' ')[1];

if (!token) {
return res.status(401).json({ error: 'Access token required' });
}

jwt.verify(token, process.env.JWT_SECRET, (err, user) => {
if (err) return res.status(403).json({ error: 'Invalid token' });
req.user = user;
next();
});
};

Data Protection

  • Encryption at rest
  • Encryption in transit
  • PII handling procedures
  • Data retention policies

Network Security

  • API rate limiting
  • CORS configuration
  • Input validation
  • SQL injection prevention

Scaling Considerations

Horizontal Scaling

[Describe how to scale horizontally]

# Example auto-scaling configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: api-service-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: api-service
minReplicas: 3
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70

Database Scaling

[Describe database scaling strategies]

  • Read replicas
  • Sharding strategies
  • Connection pooling
  • Caching layers

Performance Optimization

  • CDN implementation
  • Caching strategies
  • Database query optimization
  • Asset optimization

Deployment & Operations

Deployment Strategy

[Describe deployment approach]

# Example deployment pipeline
stages:
- build:
script: docker build -t myapp:${CI_COMMIT_SHA} .
- test:
script: npm test
- deploy:
script: kubectl set image deployment/api-service api=myapp:${CI_COMMIT_SHA}

Disaster Recovery

  • Backup procedures
  • Recovery time objectives (RTO)
  • Recovery point objectives (RPO)
  • Failover procedures

Maintenance Procedures

  • Regular updates
  • Security patches
  • Database maintenance
  • Monitoring review

Cost Considerations

Infrastructure Costs

[Estimate and breakdown costs]

  • Compute: $X/month
  • Storage: $Y/month
  • Network: $Z/month
  • Monitoring: $A/month

Optimization Strategies

  • Resource right-sizing
  • Reserved instances
  • Spot instances
  • Storage optimization

Migration Guide

From Legacy System

[If applicable, provide migration guidance]

  1. Assessment Phase

    • Current system analysis
    • Data mapping
    • Risk assessment
  2. Migration Strategy

    • Parallel run approach
    • Gradual migration
    • Rollback plan
  3. Data Migration

    -- Example data migration script
    INSERT INTO new_users (email, created_at)
    SELECT email, registration_date
    FROM legacy_users
    WHERE status = 'active';

Troubleshooting

Common Issues

Issue: High Response Times

Symptoms: API responses taking > 2 seconds Causes:

  • Database query performance
  • Lack of caching
  • Network latency

Solutions:

  • Add database indexes
  • Implement caching layer
  • Optimize queries

Issue: Memory Leaks

Symptoms: Gradually increasing memory usage Causes:

  • Unclosed connections
  • Event listener leaks
  • Large object retention

Solutions:

  • Review connection management
  • Audit event listeners
  • Implement memory profiling

Diagnostic Tools

  • Application logs
  • Performance profilers
  • Database query analyzers
  • Network monitoring tools

Complementary Patterns

  • Circuit Breaker Pattern (Coming Soon)
  • Event Sourcing Pattern (Coming Soon)
  • CQRS Pattern (Coming Soon)

Alternative Architectures

  • Monolithic Architecture (Coming Soon)
  • Serverless Architecture (Coming Soon)
  • Event-Driven Architecture (Coming Soon)

References

Documentation

External Resources


Document Metadata:

  • Created: [YYYY-MM-DD]
  • Last Updated: [YYYY-MM-DD]
  • Next Review: [YYYY-MM-DD]
  • Version: 1.0
  • Contributors: [List of contributors]

Template Usage Notes

How to Use This Template

  1. Copy this template for new reference architectures
  2. Replace all bracketed placeholders
  3. Remove sections that don't apply
  4. Include actual code examples and configurations
  5. Test all code examples before publishing

Required Sections

  • Overview, Architecture Overview, Implementation Guide, Testing Strategy

Optional Sections

  • Remove if not applicable: Migration Guide, Cost Considerations

Best Practices

  • Include working code examples
  • Use real-world scenarios
  • Keep diagrams up to date
  • Validate all links and references